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We study a recently proposed equation for the avalanche distribution in the Bak-Sneppen model.
We demonstrate that this equation indirectly relateshe exponent for the power law distribution
of avalanche sizes, t®, the fractal dimension of an avalanche cluster. We compute this relation
numerically and approximate it analytically up to the second order of expansion around the mean-field
exponents. Our results are consistent with Monte Carlo simulations of the Bak-Sneppen model in one
and two dimensions. [S0031-9007(97)05281-2]

PACS numbers: 64.60.Lx, 64.60.Ak, 64.60.Fr, 87.10.+e

The Bak-Sneppen (BS) model [1] has become one of In order to compute these two remaining exponents
the paradigms of self-organized criticality (SOC) [2]. Theone has to resort to methods which go beyond scaling
rules of its dynamics are very simple: the state of the modedrguments. Apart from the solution of the mean-field case
is completely defined by.? numbersf; arranged on a [7], and areal space renormalization group approach [8] for
d-dimensional lattice of sizé.. At every time step the d = 1, a systematic theory to compute the BS exponents
smallest of these numbers andlis nearest neighbors are is still lacking. A promising step in this direction was
replaced with new uncorrelated random numbers, drawrecently taken by one of us [9] with the introduction of an
from some distributiorP( f). This “minimalistic’ dynam-  exactequation for the avalanche distribution. Hereafter,
ics results in a remarkably rich and interesting behavior. Irwe will refer to this equation as the avalanche hierarchy
fact, there exists a whole class of models cabbgttemal equation (AHE). It was shown that inside the AHE is
models [3], which evolve according to similar rules, andhidden an infinite series of equations, relating different
share many similar features with the BS model. In allmoments of the avalanche size distribution.
these models the update happens only at the site carrying In this Letter we demonstrate that, as it was conjectured
the global minimum of some variable. The oldest, and perin [9], the AHE indirectly relates these two exponents, thus
haps the most widely known of these models, is invasiomeducing the number of independent critical exponents in
percolation [4]. The BS model, being the simplest and theéhe BS model to just one. Contrary to simple rational rela-
most analytically treatable extremal model, occupies thé¢ions based on scaling arguments [3], this exponent relation
place of an “Ising model” in this class. is highly nontrivial. First, we display the numerical solu-

The self-organized critical nature of the BS modeltion of the AHE. Then we perform a perturbative™ex-

(as well as of other extremal models) is revealed in itgansion around the mean-field solution, up to the second
ability to naturally evolve towards a stationary state whereorder ine. The numerical solution of AHE is in agree-
almost all of the variableg; are above a critical threshold ment with the MC simulations i = 1,2 [3,10] and is

fe. The dynamics in the stationary state is characterizedvell approximated by the results of tlkeexpansion up to

by scale-free bursts of activity avalancheswhichforma  second order. They constitute a significant step forward
hierarchical structure [1,5] of subavalanches within biggetowards the full solution of the BS model. However, the
avalanches. The introduction of an auxiliary paraméter unusual type of the expansion around the mean-field expo-
[3] allows one to describe the system within the paradigmsents leaves open the question of the upper critical dimen-
of standard critical phenomena. Indeed, the distributiorsiond, in the model. It also does not answer the question
P(s, f) of avalanche sizesclose tof ., has the same quali- about the geometrical, fractal properties of the avalanche
tative behavior of the cluster distribution of percolation [6] cluster. Instead, given an avalanche fractal dimengion
above and below the critical threshoigd: For f < f., it enables one to derive the powerof the avalanche dis-
P(s, f) has a finite cutoff, reminiscent of an undercritical tribution. Similarly, in ordinary percolation the power of
system. Asf — f. the cutoff diverges and a scale-free cluster distributionr is related to the cluster’s fractal di-
distribution P(s, f.) ~ s~ 7 emerges. In the overcritical mensionD via a hyperscaling relation = 1 + d/D [6].
regime f > f. there is a nonzero probability to start an Following Ref. [9], let us consider the exponential dis-
infinite avalanche, but all finite avalanches again have &ibution P(f) = ¢/, f > 0. This simplifies the expres-
finite cutoff. Scaling arguments [3] allow one to derive sions without loss of generality [11]. To define avalanches
all critical exponents of a general extremal model in termsne records theignal of the model, i.e., the value of the
of only two independent ones, sayand D—the fractal global minimal numberf.;, () as a function of timer.
dimension of the avalanche cluster. Then for every value of an auxiliary parametéran f
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avalanche of size (temporal duration)is defined as a likely and the volume of the projection should be closer and
sequence of — 1 successive events, whei,, (1) < f, closer to the total volum&d + 1)s of the avalanche it-
confined between two events, whég, (1) > f. Inother self. The “hyperscaling” relatiop = d/D will be clearly
words, the events, whefy,, (1) > f, divide the time axis violated ford > d., where one ha® = 4, u = 1[3,14].
into a series of avalanches, following one anothg(s, f) From this it follows that/, = 4 for the BS model.

is the distribution of sizes of avalanches. With this defi-  The introduction of the “phenomenological” exponent
nition, let us analyze how the distributid®(s, f) changes u closes the AHE, which then reads

when the auxiliary parametgris raised by an infinitesimal s—1

amountdf. Most f avalanches will survive this increase P (s, f) = Z s¥P(sy, f)P(s — s1,f) — s*P(s, f).

and map tof + df avalanches, but some will disappear si=1

and some newy + df avalanche will appear. These two (1)
processes both arise from the merging of fivavalanches  The solution of Eq. (1) exhibits a power law behavior
of sizess; ands, into onef + df avalanche of size = p(s, f) ~ s=7 when f is at its critical valuef.. Close

s1 + 5. Merging occurs when the first avalanche is o 7. it takes a scaling form

terminated by the selection of a sitewith a valuef; = e

fmin () Which lies in the interval f, f + df). Because P(s,f) = s TF(s”Af), ()

of the infinitesimal nature oflf we can disregard situ- where Af = f, — f. The exponents, o, and u are
ations when more than two consecutive avalanches mergg|ated throughr = 1 + u — o [3]. Perhaps a more
together. This ensures that the sitavhere the merging familiar form of this exponent relation involves the cor-
of two avalanches occurs, is one of the sites updated byg|ation length exponent = 1/oD. The relation then
fche firstf avalanche [12]. It was also ri_gorously proven pecomes = 1 + (d — 1/»)/D. Ithas been conjectured
in [3,9] that numbersf; on theser“(s,) sites are in fact  [9] that Eq. (1) also indirectly relates the exponeatand
uncorrelatedand distributed asP;(f') = ¢/ =/, so that ;" |n order to check this conjecture we numerically in-
dP;(f)/df' = 1. Therefore, the probability of such a tegrated Eq. (1) forward irf with the initial condition
merging event to linear order i, is R“(s1) df [9]. The  p(5,0) = &, , for several values of [15]. In order to lo-
differential change itP (s, f) is then given by the AHE [9]:  cate the critical poinf.( w), a least square fit of loB(s, f)

s—1 vs logs was performed runtime for each value faf The

arP(s, f) = Z R (s1))P(s1, f)P(s — s1,f) valuey2( f) of the sum of the squared distances from the fit
si=1 drops almost to zero in a very narrow region (see Fig. 1),
— RY(s)P(s, f) which then allows for a very precise estimate fof u)

and7(u). The results for the latter are shown in Fig. 2
where the first term on the right—hand side (RHS) describegj)_ These results are in perfect agreement with Monte
the gain of avalanches of sizedue to merging of two  Carlo estimates of in one and two dimensions [3,10]. In
consecutive avalanches of sigeands, = s — s1. The g =1, 4 = 1/D = 0.411(2) andr = 1.07(1), while the
second term is instead the “loss term” due to avalanchegsults of numerical integration of (1) giv€0.4) = 1.058.
of sizes merging to form larger avalanches. In d = 2 the Monte Carlo resultg. = 2/D = 0.685(5),

To proceed further one needs to introduce the scaling = 1.245(10) are also consistent with our relation giving
ansatzR‘(s) ~ s* for the number of sites, updated at least(0.7) = 1.238. This confirms that Eq. (1) indeed con-
once in an avalanche of size This power law relation tains anovelnontrivial relation betweer and w.
is a consequence of tlspatiotemporafractal structure of
the avalanches in the BS model [13]. The exponefat),
which is an independent “input” variable in the AHE, de-
pends on the dimensionality of the model and the fractal
structure of the avalanche. Physically, the exponent-
lates the volume of the spatial projection of an avalanche
cluster to its temporal duratian If this spatial projection

is a dense object with a fractal dimension equal to the di- E ...............

mension of spacé, u is given byd/D. In this expression, W E

D is the fractal dimension of the avalanche [3] defined 10°F ) 70°
throughs = R”. Thisis knownto be trueid = 1, where Wb . s - 512

the connected nature of an avalanche cluster ensures th J? i S:: ;1024
compactness (absence of holes) of its projectiord #a 2 oF Vo —s,., =2048

the projection of the avalanche can have holes, but still 10°F | ,‘ , oo
it was numerically found to be dense (i.e., have a fractal 275 2.80 2.85 2.90 295
dimensiond) [3]. It is clear that, as the dimensionality £

of space is increased, the expongnshould approach,  FiG. 1. The plot of y2 and 7 vs f for u = 0.411 and
since multiple updates of the same site become less and lesgx = 521, 1024, and2048.
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FIG. 2. The relation7(u): numerical solution of Eg. (1)
(O, with smax = 1024), expansion up to order — u (dashed

line), and(1 — w)? (full line). The results of the Monte Carlo
numerical simulations i@ = 1, 2 [3] and the mean-field result
[7] are also shown.

We were not able to solve Eq. (7) and find the exact
relationo(n). However, we can explicitly solve AHE for
u = 1. This corresponds to the mean-field version of the
BS model, which has been studied in detail [7]. We will
rederive their results using our approach. Our strategy
will then be to perform a systematic expansion around
the mean-field solution, where = 1 — w. This clearly
differs from the standard = d — d. expansion (note
that the upper critical dimensiod,. for the BS model is
still an open issue), since the dimensionality of the system
does not enter directly into our discussion.

Foru = 1 Eq. (7) reduces to

h(x) = oxh(x)h'(x) — (1 — o)h*(x). (8)

Its solution readsi(x)[1 — xh(x)]° ! = ag, with gy an

integration constant. Equation (5) implies a laxggehav-
ior h(x) = x"Y(C + Dx~'7 + ...), compatible with the
solution of Eq. (8) onlyifC = 1ando =1 — o = 1/2.

Foray = 1 one recovers a mean-field solution [7]:

V4 + x? —x

hO(x) = 5

(9)

In order to address this relation analytically, let us take

the Laplace transform of Eq. (1) [9].
pla,f) =37 P(s,fle *, reads

a1 — pla, )] =D P(s,flste . (3)
s=1

p(a, f) has the scaling form given by

pla,f) =1—=a " 'nAf/a”). 4)

The AHE, with The above derivation demonstrates that the knowledge of

the whole scaling functiork(x) is necessary in order to
find the exponentr.

To proceed beyond the mean-field case we perform a
1 — u = € expansion of Eq. (7) around the = 1 solu-
tion (9). We puto = % + ce, wherec is to be determined
later. It is convenient to change variableszte= 79 (x)
and to seti(x) = z[1 + ep(z) + O(e?)]. Keeping only

This Scaling form follows from Eq (2) and the scal- terms linear ine one getS an equation f@j‘

ing functions are related through(x) = fff[F(O) —
Fxy7)e Y]y~ " dy.

The scaling functiorz(x) [as well asF(x)] is analytic
at x =0. At any Af # 0, p(a,f) is analytic in «
and its expansion in powers af is related [9] to the
moments(s*); of P(s,f). These diverge ags*); =
(=D o |Af|-kFo=m/7 in the limit Af — 0%, below
(+) and above {) the critical pointf. (for more details
see [9]). This behavior is described by the largé
asymptotics of:(x) and it requires thal(x) |x|(7~#)/ for
|x| > 1, must be an analytic function ¢f|~!/:

h(=)xl) = [x|®7> pE|x| ke, (5)
k=0
As we will see later, it is the condition thaix) has the
desired asymptotic form (5), which fixes the valuesofor
a givenu.

With the scaling ansatz (4), after recovering the scalin

relation
T=1+pu— o, (6)
Eq. (3) becomes
oy h(x) b xzh!(xz) — 2% h(xz)
h(x)——r(l_ )f z 0= /o) _
(7)

%z(l +Pap = — 1 - P(1/2)

1+ z?
+ (1 + 20)z% + 2In <,
2z

wherey (x) is the derivative of I1'(x). This equation has
to be solved with the boundary conditiaf(z = 1) = 0
[i.e., h(0) = 1]. After some algebra one gets

1 —z2 1 + z?
=A —2In
() 1+ 22 2
2+ (2 — 40)7?
+ —1 10
2 nz, (10)

whereA = 2 + (1/2) = 0.03649.... The value ofc
is set by the requirement that(z) must give rise to the
desired asymptotic behavior afx). The singular behav-

Yoratz = 1/x — 0 must be matched to the asymptotics of

h(x) for x — . To ordere, Eq. (5) requires thai(x) =
x~172€ f(x214e€) wheref(y) is analytic aty = 0 [to or-
dere®, f(y) = (/T + 4y — 1)/2]. Expanding this rela-
tion to ordere one finds that the singular part ¢f(z) must
have exactly the form 2[1 + 2¢z?/(1 + z?)]Inz. The
only value ofc which matches this requirement to the last
term in the RHS of Eqg. (10) is = 0. Note that the whole
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asymptotic behavior, and not just its leading part, is necgests that a complete = d — d. expansion for the BS
essary to determine. model could be possible. The accomplishment of this task,
This concludes the first order of the expansionein however, calls for a systematic study of the BS model in
We have found that in the first order ia the critical high dimensions and for identification of the upper critical
exponento did not change. The exponent relation (6) dimensionalityd..
then givest = 3/2 — €. Finally, the analytic form of The work of one of us (S.M.) was supported by the
the scaling functiork(x), containing all information about U.S. Department of Energy, Division of Material Science,
the amplitudes of avalanche moments, is given by under Contract No. DE-AC02-76CHO00016. The authors
2 thank the 1.S.l. foundation in Torino where this work was

/ 2 _ —€
h(x) = vatxl o x [1 + x—} begun. S.M. and M. M. thank the Institut de Physique
2 4 Théorique, at the University of Fribourg, and the Max
% [1 4 €Ax } + 0(ed) Planck Institute in Dresden, respectively, for the hospi-
V4 + 22 ' tality. P.D.L.R. thanks A. Valleriani for many useful

) ) ) . discussions and for a careful reading of the manuscript.
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